1,821 research outputs found

    Numerical Study on Impulse Ventilation for Smoke Control in an Underground Car Park

    Get PDF
    AbstractThis study examines smoke control capacity of impulse ventilation system (IVS) in an underground car park. An analysis is made in relation to important parameters including jet fan number, jet fan velocity, extract rate and system robustness on fire position. The comparison with ductwork system is also performed to determine the different effect of smoke control between two systems. Fire Dynamic Simulator version 5.30 is applied to simulate 10 scenarios in a 80 m long, 40 m wide and 3.2 m height domain witha fire source simulating a car fire with an peak heat release rate of 4 MW. Results show that impulse ventilation system not noly prohibit fire smoke spreading but also maintain a good visibility providing clear access for fighters. However it may cause temperature rise on the downwind zone of fire source with a maximum value between 80-100 and fire plume e tilt. Smoke control capacity of impulse ventilation system is sensitive to jet fan numbers. Too high jet fan velocity may cause severe smoke recirculation. Increment in extract rate is conductive to relay jet flows. An impulse ventilation system can effectively control smoke movement and induce smoke to extract points under two typical different fire locations, which is of great practical importance. Impulse ventilation system seems superior to ductwork system in maintaining high visibility

    Asymmetrical Modulation for Uplink Communication in Cooperative Networks

    Get PDF

    Cognitive Radio MAC Protocol for WLAN

    Get PDF

    Nanosensors for cancer detection.

    Get PDF
    Cancer is a major burden in today's society and one of the leading causes of death in industrialised countries. Various avenues for the detection of cancer exist, most of which rely on standard methods, such as histology, ELISA, and PCR. Here we put the focus on nanomechanical biosensors derived from atomic force microscopy cantilevers. The versatility of this novel technology has been demonstrated in different applications and in some ways surpasses current technologies, such as microarray, quartz crystal microbalance and surface plasmon resonance. The technology enables label free biomarker detection without the necessity of target amplification in a total cellular background, such as BRAF mutation analysis in malignant melanoma. A unique application of the cantilever array format is the analysis of conformational dynamics of membrane proteins associated to surface stress changes. Another development is characterisation of exhaled breath which allows assessment of a patient's condition in a non-invasive manner

    Macroporous smart hydrogels for fast-responsive piezoresistive chemical microsensors

    Get PDF
    Within this work we present the synthesis and characterization of a pH-sensitive macroporous p(AAm-co-AA) hydrogel with an interconnected channel structure to enhance diffusion of aqueous solutions. The hydrogel is characterized by SEM and mercury porosimetry. Furthermore, the hydrogel is successfully integrated into piezoresistive microsensors measuring the hydrogel swelling due to pH changes. A response time reduction of about 80% compared to sensors with conventional non-porous hydrogels is accomplished

    Macroporous smart hydrogels for fast-responsive piezoresistive chemical microsensors

    Get PDF
    Within this work we present the synthesis and characterization of a pH-sensitive macroporous p(AAm-co-AA) hydrogel with an interconnected channel structure to enhance diffusion of aqueous solutions. The hydrogel is characterized by SEM and mercury porosimetry. Furthermore, the hydrogel is successfully integrated into piezoresistive microsensors measuring the hydrogel swelling due to pH changes. A response time reduction of about 80% compared to sensors with conventional non-porous hydrogels is accomplished

    Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells

    Get PDF
    Scope In vitro and in vivo studies suggest that dietary anthocyanins modulate cardiovascular disease risk; however, given anthocyanins extensive metabolism, it is likely that their degradation products and conjugated metabolites are responsible for this reported bioactivity. Methods and results Human vascular endothelial cells were stimulated with either oxidized LDL (oxLDL) or cluster of differentiation 40 ligand (CD40L) and cotreated with cyanidin-3-glucoside and 11 of its recently identified metabolites, at 0.1, 1, and 10 μM concentrations. Protein and gene expression of IL-6 and VCAM-1 was quantified by ELISA and RT-qPCR. In oxLDL-stimulated cells the parent anthocyanin had no effect on IL-6 production, whereas numerous anthocyanin metabolites significantly reduced IL-6 protein levels; phase II conjugates of protocatechuic acid produced the greatest effects (>75% reduction, p ≤ 0.05). In CD40L-stimulated cells the anthocyanin and its phase II metabolites reduced IL-6 protein production, where protocatechuic acid-4-sulfate induced the greatest reduction (>96% reduction, p ≤ 0.03). Similarly, the anthocyanin and its metabolites reduced VCAM-1 protein production, with ferulic acid producing the greatest effect (>65% reduction, p ≤ 0.04). Conclusion These novel data provide evidence to suggest that anthocyanin metabolites are bioactive at physiologically relevant concentrations and have the potential to modulate cardiovascular disease progression by altering the expression of inflammatory mediators

    Non-Markovian dynamics in a spin star system: The failure of thermalization

    Full text link
    In most cases, a small system weakly interacting with a thermal bath will finally reach the thermal state with the temperature of the bath. We show that this intuitive picture is not always true by a spin star model where non-Markov effect predominates in the whole dynamical process. The spin star system consists a central spin homogeneously interacting with an ensemble of identical noninteracting spins. We find that the correlation time of the bath is infinite, which implies that the bath has a perfect memory, and that the dynamical evolution of the central spin must be non- Markovian. A direct consequence is that the final state of the central spin is not the thermal state equilibrium with the bath, but a steady state which depends on its initial state.Comment: 8 page

    Electron Localization in a 2D System with Random Magnetic Flux

    Full text link
    Using a finite-size scaling method, we calculate the localization properties of a disordered two-dimensional electron system in the presence of a random magnetic field. Below a critical energy EcE_c all states are localized and the localization length ξ\xi diverges when the Fermi energy approaches the critical energy, {\it i.e.} ξ(E)EEcν\xi(E)\propto |E-E_c|^{-\nu}. We find that EcE_c shifts with the strength of the disorder and the amplitude of the random magnetic field while the critical exponent (ν4.8\nu\approx 4.8) remains unchanged indicating universality in this system. Implications on the experiment in half-filling fractional quantum Hall system are also discussed.Comment: 4 pages, RevTex 3.0, 5 figures(PS files available upon request), #phd1
    corecore